Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Heliyon ; 10(7): e28350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560213

RESUMO

Respiratory tract infections due to a variety of viruses continue to threaten the human population worldwide, particularly in developing countries. Among the responsible viruses, Human Bocavirus (HBoV), a novel discovered virus, causes respiratory tract and gastroenteritis disorders in young children. In Saudi Arabia, data regarding virus molecular epidemiology and evolution and its implication in respiratory tract infection are scarce. In the current study, genetic diversity and circulation pattern of HBoV-1 among hospitalized children due to acute respiratory tract infection (ARTI) during two consecutive years were charted. We found that 3.44% (2014/2015) and 11.25% (2015/2016) of children hospitalized due to ARTI were infected by HBoV-1. We have shown that HBoV was detected year-round without a marked seasonal peak. HBoV-1 also was co-detected with one or multiple other respiratory viruses. The multisequence analysis showed high sequence identity (∼99%) (few point mutation sites) between strains of each genotype and high sequence variation (∼79%) between HBoV-1 and the other 3 genotypes. Phylogenetic analysis showed the clustering of the study's isolates in the HBoV-1 subclade. Our data reveal that genetically conserved HBoV-1 was circulating among admitted children during the course of the study. Further epidemiological and molecular characterization of multiple HBoV-1 strains for different years and from all regions of Saudi Arabia are required to understand and monitor the virus evolution.

2.
Am J Cancer Res ; 13(3): 727-757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034228

RESUMO

Due to heterogenetic-specific nature of the available biomarkers, the incidence of lung adenocarcinoma (LUAD) is on the rise worldwide. Previously reported LUAD-related hub genes were searched from the medical literature via literature mining and were processed to identify few top genes via degree method. Later, a comprehensive in silico methodology was applied on the selected real hub genes to identify their tumor driving, diagnostic, and prognostic roles in LUAD patients with divers clinicopathological variables. Out of total 145 extracted hub genes, six genes including CDC6, PBK, AURKA, KIF2C, OIP5, and PRC1 were identified as real hub genes. The expression analysis showed that all these genes were significantly up-regulated across LUAD samples of different clinicopathological variables. In addition, a variety of unique correlations among the expression and of real hub genes and some other parameters including promoter methylation status, overall survival (OS), genetic changes, tumor purity, and immune cell infiltration have also been explored in the present study. Moreover, via TFS-miRNA-mRNA regulatory network, one important TF (E2F1) and one important miRNAs (hsa-mir-34a-5p) that targeted all the real hub genes were also identified. Finally, a variety of drugs also predicted to be very useful in treating LUAD. The discovery of the real hub genes, TFS-miRNA-mRNA network, and chemotherapeutic drugs associated with LUAD provides new insights into underlying mechanisms and treatment of LUAD overcoming heterogeneity barriers.

3.
Viruses ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36560596

RESUMO

With the emergence of SARS-CoV-2, routine surveillance combined with sequence and phylogenetic analysis of coronaviruses is urgently required. In the current study, the four common human coronaviruses (HCoVs), OC43, NL63, HKU1, and 229E, were screened in 361 clinical samples collected from hospitalized children with respiratory symptoms during four winter seasons. RT-PCR-based detection and typing revealed different prevalence rates of HCoVs across the four seasons. Interestingly, none of the four HCoVs were detected in the samples (n = 100) collected during the winter season of the COVID-19 pandemic. HCoV-OC43 (4.15%) was the most frequently detected, followed by 229E (1.1%). Partial sequences of S and N genes of OC43 from the winter seasons of 2015/2016 and 2021/2022 were used for sequence and phylogenetic analysis. Multiple sequence alignment of the two Saudi OC43s strains with international strains revealed the presence of sequence deletions and several mutations, of which some changed their corresponding amino acids. Glycosylation profiles revealed a number of O-and N-glycosylation sites in both genes. Based on phylogenetic analysis, four genotypes were observed with Riyadh strains grouped into the genotype C. Further long-term surveillance with a large number of clinical samples and sequences is necessary to resolve the circulation patterns and evolutionary kinetics of OC43 in Saudi Arabia.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Infecções Respiratórias , Humanos , Criança , Filogenia , Coronavirus Humano OC43/genética , Arábia Saudita/epidemiologia , Prevalência , Pandemias , COVID-19/epidemiologia , SARS-CoV-2/genética , Estações do Ano
4.
Infect Drug Resist ; 15: 3791-3800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875613

RESUMO

Background: SARS-CoV-2 pandemic continues to threaten the human population with millions of infections and deaths worldwide. Vaccination campaigns undertaken by several countries have resulted in a notable decrease in hospitalization and deaths. However, with the emergence of new virus variants, it is critical to determine the longevity and the protection efficiency provided by the current authorized vaccines. Aim: The aims of this study are to provide data about the magnitude of immune responses in individuals fully vaccinated against COVID-19 in Riyadh province of Saudi Arabia. Also, to evaluate the continuity of specific IgG levels and compare the titers in individuals who have been received two doses of the matched and mixed vaccines, including Pfizer and AstraZeneca against SARS-CoV-2 during the period of three to six months. Moreover, we analyze the current state of immune response in terms of antibody responses in thepopulation postvaccination using homogenous or hetrogenous vaccine regimen. Methods: A total of 141 healthy volunteers were recruited to our study; blood (n=63) and the saliva samples (n=78) and were collected from fully vaccinated individuals in Riyadh city. We employed a specific ELISA assay in plasma and saliva of fully vaccinated individuals. Results: IgG levels varied with age groups with the highest concentration in the age group 19-29 years, but the age group (≥50) had the lowest IgG concentration. The IgG levels in both serum and saliva were higher after three months and start to wane after six months. Individuals who received mixed types of vaccines had significantly better response than Pfizer vaccine alone. Conclusion: The current study investigates the status of humoral responses in different age groups, in terms of antibody measurements. These data will help to evaluate the need for further COVID-19 vaccine doses and to what extent a two-dose regimen will protect vaccinated individuals.

5.
Diagnostics (Basel) ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453960

RESUMO

Currently, the standard assay employed to diagnose human orthopneumovirus infection is real-time reverse transcriptase PCR assay (rRT-PCR), a costly and time-consuming procedure that requires the manipulation of infectious viruses. In addition to RT-PCR, serological tests can complement the molecular diagnostic methods and have proven to be important tools in sero-surveillance. In this study, we report the development, optimization, and validation of a novel and rapid in-house diagnostic ELISA kit to detect human orthopneumovirus in clinical samples. We developed three sensitive ELISA formats through the immunization of rats with novel recombinant pPOE-F or pPOE-TF vectors. The two vectors expressed either the full-length (pPOE-F) or the truncated form (pPOE-TF) of the fusion (F) protein. The developed ELISA kits were optimized for coating buffer, capture antibody, blocking buffer, sample antigen, detection antibodies, and peroxidase-conjugated antibody, and validated using 75 rRT-PCR-confirmed nasopharyngeal aspirate (NPA) human orthopneumovirus samples and 25 negative samples collected from hospitalized children during different epidemic seasons between 2014 and 2017. Our results indicate that rats immunized with pPOE-F or pPOE-TF showed significant induction of high levels of MPAs. Validation of the ELISA method was compared to the rRT-PCR and the sensitivity hierarchy of these developed ELISA assays was considered from highest to lowest: indirect competitive inhibition ELISA (93.3%) > indirect antigen-capture ELISA (90.6%) > direct antigen-capture ELISA (86.6%). The development of the rapid in-house diagnostic ELISA kits described in this study demonstrates that a specific, rapid and sensitive test for human orthopneumovirus antigens could be successfully applied to samples collected from hospitalized children during different epidemics and can help in the efficient diagnosis of respiratory syncytial viral infections.

6.
Am J Transl Res ; 14(12): 8918-8933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36628247

RESUMO

BACKGROUND: Considering it is one of the major causes of sudden cardiac arrest, the proper management of hypertrophic cardiomyopathy (HCM) is essential. However, efficient treatment options for this disease are still lacking. The discovery of HCM-associated hub genes may help in diagnosis and offer a reliable tool for developing effective therapeutic strategies. METHODS: We examined HCM-based gene expression datasets (GSE36961) from the Gene Expression Omnibus (GEO) database for the identification of differentially expressed genes (DEGs), PPI network development, module screening, and shortlisting of hub genes via GEOR2, STRING, and Cytoscape. Moreover, we also used another HCM-based gene expression dataset (GSE32453) for the expression validation of hub genes. Following this, we constructed the lncRNA-cricRNA-miRNA-mRNA regulatory network after retrieving information from the miRTarBase, miRDB, and MiRcode databases. Finally, we used DAVID to perform functional and pathway analysis of the hub genes. RESULTS: From GSE36961, a total of the 262 most significant DEGs, including 162 down-regulated and 76 up-regulated, were identified between HCM patients and normal individuals. Among these DEGs, a total of 10 significantly down-regulated DEGs, including cluster of differentiation 14 (CD14), beta2 Integrin Gene (ITGB2), C1q subcomponent subunit B (C1QB), Cluster of Differentiation 163 (CD163), Hematopoietic Cell-Specific Lyn Substrate 1 (HCLS1), Arachidonate 5-Lipoxygenase Activating Protein (ALOX5AP), Pleckstrin (PLEK), Complement C1q C Chain (C1QC), Fc fragment Of IgE receptor Ig (FCER1G), and tyrosine kinase binding protein (TYROBP), were shortlisted as the hub genes. Pathway enrichment analysis showed that the identified hub genes were involved in the dysregulation of some diverse pathways in HCM patients. Such as, Pertussis, Complement and coagulation cascade, Legnionellosis, Asthma, Staphylococcus aureus infection, etc. Lastly, we also explored hub genes' regulatory 2 MicroRNAs (miRNAs, has-mir-7-5p and has-mir-27a-3p), one Long non-coding RNAs (lncRNA, OIP5-AS1-201), and one Circular RNA (cricRNA, CDR1as) via lncRNA-cricRNA-miRNA-mRNA regulatory network. CONCLUSION: Our study revealed that ten hub genes (CD14, ITGB2, C1QB, CD163, HCLS1, ALOX5AP, PLEK, C1QC, FCER1G, and TYROBP) are involved in the development and progression of HCM. These genes can potentially be used as biomarkers and therapeutic targets for HCM patients.

7.
Am J Transl Res ; 14(12): 8843-8861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36628250

RESUMO

OBJECTIVES: Cervical Squamous Cell Carcinoma (CESC) is one of the most fatal female malignancies, and the underlying molecular mechanisms governing this disease have not been fully explored. In this research, we planned to conduct the analysis of Gene Expression Omnibus (GEO) cervical squamous cell carcinoma microarray datasets by a detailed in silico approach and to explore some novel biomarkers of CESC. METHODS: The top commonly differentially expressed genes (DEGs) from the GSE138080 and GSE113942 datasets were analyzed by Limma package-based GEO2R tool. The protein-protein interaction (PPI) network of the DEGs was drawn through Search Tool for the Retrieval of Interacting Genes (STRING), and top 6 hub genes were obtained from Cytoscape. Expression analysis and validation of hub genes expression in CESC samples and cell lines were done using UALCAN, OncoDB, GENT2, and HPA. Additionally, cBioPortal, Gene set enrichment analysis (GSEA) tool, Kaplan-Meier (KM) plotter, ShinyGO, and DGIdb databases were also used to check some important values of hub genes in CESC. RESULTS: Out of 79 DEGs, the minichromosome maintenance complex component 4 (MCM4), nucleolar and spindle-associated protein 1 (NUSAP1), cell division cycle associated 5 (CDCA5), cell division cycle 45 (CDC45), denticleless E3 ubiquitin protein ligase homolog (DTL), and chromatin licensing and DNA replication factor 1 (CDT1) genes were regarded as hub genes in CESC. Further analysis revealed that the expressions of all these hub genes were significantly elevated in CESC cell lines and samples of diverse clinical attributes. In this study, we also documented some important correlations between hub genes and some other diverse measures, including DNA methylation, genetic alterations, and Overall Survival (OS). Last, we also identify hub genes associated ceRNA network and 31 important chemotherapeutic drugs. CONCLUSION: Through detailed in silico methodology, we identified 6 hub genes, including MCM4, NUSAP1, CDCA5, CDC45, DTL, and CDT1, which are likely to be associated with CESC development and diagnosis.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34200934

RESUMO

The human population is currently facing the third and possibly the worst pandemic caused by human coronaviruses (CoVs). The virus was first reported in Wuhan, China, on 31 December 2019 and spread within a short time to almost all countries of the world. Genome analysis of the early virus isolates has revealed high similarity with SARS-CoV and hence the new virus was officially named SARS-CoV-2. Since CoVs have the largest genome among all RNA viruses, they can adapt to many point mutation and recombination events; particularly in the spike gene, which enable these viruses to rapidly change and evolve in nature. CoVs are known to cross the species boundaries by using different cellular receptors. Both animal reservoir and intermediate host for SARS-CoV-2 are still unresolved and necessitate further investigation. In the current review, different aspects of SARS-CoV-2 biology and pathogenicity are discussed, including virus genetics and evolution, spike protein and its role in evolution and adaptation to novel hosts, and virus transmission and persistence in nature. In addition, the immune response developed during SARS-CoV-2 infection is demonstrated with special reference to the interplay between immune cells and their role in disease progression. We believe that the SARS-CoV-2 outbreak will not be the last and spillover of CoVs from bats will continue. Therefore, establishing intervention approaches to reduce the likelihood of future CoVs spillover from natural reservoirs is a priority.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , China/epidemiologia , Evolução Molecular , Humanos , Pandemias
9.
Virol J ; 18(1): 90, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931099

RESUMO

BACKGROUND: The Middle East Respiratory Syndrome-related Coronavirus (MERS-CoV) continues to exist in the Middle East sporadically. Thorough investigations of the evolution of human coronaviruses (HCoVs) are urgently required. In the current study, we studied amplified fragments of ORF1a/b, Spike (S) gene, ORF3/4a, and ORF4b of four human MERS-CoV strains for tracking the evolution of MERS-CoV over time. METHODS: RNA isolated from nasopharyngeal aspirate, sputum, and tracheal swabs/aspirates from hospitalized patients with suspected MERS-CoV infection were analyzed for amplification of nine variable genomic fragments. Sequence comparisons were done using different bioinformatics tools available. RESULTS: Several mutations were identified in ORF1a/b, ORF3/4a and ORF4b, with the highest mutation rates in the S gene. Five codons; 4 in ORF1a and 1 in the S gene, were found to be under selective pressure. Characteristic amino acid changes, potentially hosted and year specific were defined across the S protein and in the receptor-binding domain Phylogenetic analysis using S gene sequence revealed clustering of MERS-CoV strains into three main clades, A, B and C with subdivision of with clade B into B1 to B4. CONCLUSIONS: In conclusion, MERS-CoV appears to continuously evolve. It is recommended that the molecular and pathobiological characteristics of future MERS-CoV strains should be analyzed on regular basis to prevent potential future outbreaks at early phases.


Assuntos
Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Aminoácidos , Códon/genética , Biologia Computacional , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/prevenção & controle , Evolução Molecular , Genômica , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Mutação , Fases de Leitura Aberta/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Arábia Saudita , Escarro/virologia
10.
J Inflamm Res ; 14: 2121-2131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045884

RESUMO

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in the Kingdom of Saudi Arabia, is associated with a high mortality rate. AIM: To determine the effect of MERS-CoV on the immune response in infected patients and investigate cytokine production in the A549 epithelial cell line in response to a recombinant MERS-CoV spike protein (rSP) in the presence or absence of anti-dipeptidyl peptidase 4 (DPP4) antibody (3 independent experiments). Cytokine levels were measured using a cytokine ELISA array. METHODS: A Bio-Plex multiplex assay and cytokine ELISA were used in our study to measure the cytokine levels. RESULTS: Comparative analysis of MERS-CoV-infected patients (4 samples) and noninfected healthy controls (HCs) (5 samples) showed that serum levels of the following cytokines and chemokines were significantly higher in MERS-CoV patients than in the HCs (*p < 0.05): interferon (IFN)-α2 (43.4 vs 5.4), IFN-ß (17.7 vs 6.2), IFN-γ (43.4 vs 9.7), interleukin (IL)-8 (13.7 vs 0), IL-2 (11.2 vs 3), IL-27p28 (57.8 vs 13.8), and IL-35 (167.5 vs 87.5). DISCUSSION: Our results revealed that MERS-CoV infection induced a slight increase in IFN levels but triggered a more pronounced increase in expression of the regulatory cytokines IL-27 and IL-35. A recombinant version of the full-length MERS-CoV spike protein increased the expression of IL-8 (160 pg/mL), IL-2 (100 pg/mL) and IL-12 (65 pg/mL) in A549 lung epithelial cells compared to that in the unstimulated control cells. The presence of anti-DPP4 antibody did not affect cytokine suppression or induction in A549 cells in vitro but decreased the level of IL-8 from 160 pg/mL to 65 pg/mL. CONCLUSION: MERS-CoV can decrease IFN levels to interfere with the IFN pathway and enhance the production of regulatory cytokines. Inhibition of the increases in IL-27 and IL-35 may contribute to halting MERS-CoV in the early stage of infection.

11.
ACS Omega ; 6(15): 10403-10414, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056193

RESUMO

Respiratory syncytial virus (RSV) is a leading viral pathogen causing acute lower respiratory tract infection in children. The G protein of RSV is involved in attachment with the host cell. It is a neutralizing antigen and thus a vaccine candidate. Heparan sulfate is a type of glycosaminoglycan (GAG) present on the host cell membrane that is involved in attachment with the G protein of RSV. We describe a novel approach for efficient expression and purification of the ectodomain G protein in the prokaryotic system and its biophysical characterization. The native ectodomain G protein was purified using a two-step process by Ni-NTA and DEAE weak anion-exchange chromatography through the supernatant obtained after cell lysis. In addition, the denatured form of the protein was also purified from the solubilized inclusion bodies (IBs) by Ni-NTA affinity chromatography with a higher yield. Dynamic light scattering (DLS) was performed to confirm the homogeneity of the purified protein. The effect of pH on the stability and structure of the purified protein was studied by circular dichroism (CD), fluorescence, and absorbance spectroscopy techniques. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) were exploited to demonstrate the interaction of heparan sulfate with the ectodomain G protein. The dynamic light scattering results showed that the purified protein was homogenic and had a well-folded native conformation. Biophysical characterization of the protein revealed that it was stable and had intact secondary and tertiary structures at pH 7.5. CD analysis revealed that the protein showed a loss in the secondary structure at pH values 5.5 and 3.5, while absorbance spectroscopy suggested a stable tertiary structure at pH values 7.5 and 5.5 with a probable aggregation pattern at pH 3.5. This loss in the structure of the ectodomain G protein at low pH can be correlated with its physiological activity. A slight change in pH might play a crucial role in host-pathogen interactions. The fluorescence intensity of the protein decreased on moving toward a lower pH with no spectral shift in emission maxima. In addition, isothermal titration calorimetry and microscale thermophoresis results showed strong binding affinity of the ectodomain G protein with heparan sulfate. The binding of heparan sulfate with protein was probably due to the electrostatic interaction of positively charged amino acid residues of the heparin-binding domain of the protein and the negatively charged group of GAGs. Future studies may involve the development of possible therapeutic agents interacting with the G protein and affecting the overall charge and pH that might hinder the host-pathogen interaction.

12.
Int Rev Immunol ; 39(5): 233-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469615

RESUMO

Natural killer cells play a vital role in the rejection of tumors and pathogen-infected cells. NK cells are indispensable in the early immune response against viral infections by directly targeting infected cells. Furthermore, NK cells influence adaptive immunity by driving virus-specific T-cell responses. Respiratory syncytial virus, a highly contagious virus that causes bronchiolitis, is the main reason for mortality in infants and elderly patients. RSV infection triggers both innate and adaptive immune responses. However, immunity against RSV is ephemeral due to the impaired development of immunological memory. The role of NK cells during RSV infection remains ambiguous. NK cells play a dual role in RSV infection; initially, their role is a protective one as they utilize their intrinsic cytotoxicity, followed by a detrimental one that induces lung injury due to the inhibition of antibody responses and the secretion of pro-inflammatory factors. Noteworthy, IFN-γ released from NK cells play a critical role in promoting a shift to adaptive responses and inhibiting antibody responses in neonates. Indeed, NK cells have a pro-inflammatory and inhibitory role rather than a cytotoxic one that contributes to the severity of the disease. Therapeutic options, including DNA-protein-based vaccines, synthetic peptides, and attenuated strains, are presently under tests. However, there is a need for effective strategies to augment NK cell activity and circumvent the pro-inflammatory activity to benefit the host. In this review, we focused on the role played by NK cells in the immune response and its outcome on the immunopathogenesis of RSV disease.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Células Matadoras Naturais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia , Imunidade Adaptativa , Citocinas/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
13.
J Med Virol ; 92(8): 1133-1140, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31777964

RESUMO

Lower respiratory tract infections caused by Human orthopneumovirus are still a threat to the pediatric population worldwide. To date, the molecular epidemiology of the virus in Saudi Arabia has not been adequately charted. In this study, a total of 205 nasopharyngeal aspirate samples were collected from hospitalized children with lower respiratory tract symptoms during the winter seasons of 2014/15 and 2015/16. Human orthopneumovirus was detected in 89 (43.4%) samples, of which 56 (27.3%) were positive for type A and 33 (16.1%) were positive for type B viruses. The fragment that spans the two hypervariable regions (HVR1 and HVR2) of the G gene of Human orthopneumovirus A was amplified and sequenced. Sequence and phylogenetic analyses have revealed a genotype shift from NA1 to ON-1, which was prevalent during the winter seasons of 2007/08 and 2008/09. Based on the intergenotypic p-distance values, ON-1 was reclassified as a subgenotype of the most predominant genotype GA2. Three conserved N-glycosylation sites were observed in the HVR2 of Saudi ON-1 strains. The presence of a 23 amino acid duplicated region in ON-1 strains resulted in a higher number of O-glycosylation sites as compared to other genotypes. The data presented in this report outlined the replacement of NA1 and NA2 subgenotypes in Saudi Arabia with ON-1 within 7 to 8 years. The continuous evolution of Human orthopneumovirus through point mutations and nucleotide duplication may explain its ability to cause recurrent infections.


Assuntos
Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Masculino , Mutação , Nasofaringe/virologia , Prevalência , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/virologia , Arábia Saudita/epidemiologia , Estações do Ano , Análise de Sequência de DNA , Fatores Sexuais
14.
Arch Virol ; 164(8): 1981-1996, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31139937

RESUMO

Acute lower respiratory tract infection is a major health problem that affects more than 15% of the total population of Saudi Arabia each year. Epidemiological studies conducted over the last three decades have indicated that viruses are responsible for the majority of these infections. The epidemiology of respiratory viruses in Saudi Arabia is proposed to be affected mainly by the presence and mobility of large numbers of foreign workers and the gathering of millions of Muslims in Mecca during the Hajj and Umrah seasons. Knowledge concerning the epidemiology, circulation pattern, and evolutionary kinetics of respiratory viruses in Saudi Arabia are scant, with the available literature being inconsistent. This review summarizes the available data on the epidemiology and evolution of respiratory viruses. The demographic features associated with Middle East respiratory syndrome-related coronavirus infections are specifically analyzed for a better understanding of the epidemiology of this virus. The data support the view that continuous entry and exit of pilgrims and foreign workers with different ethnicities and socioeconomic backgrounds in Saudi Arabia is the most likely vehicle for global dissemination of respiratory viruses and for the emergence of new viruses (or virus variants) capable of greater dissemination.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções Respiratórias/epidemiologia , Animais , Infecções por Coronavirus/virologia , Humanos , Islamismo , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Infecções Respiratórias/virologia , Arábia Saudita/epidemiologia , Viagem
15.
Hum Vaccin Immunother ; 13(7): 1586-1597, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28272978

RESUMO

The development of safe and potent vaccines for human respiratory syncytial virus (HRSV) is still a challenge for researchers worldwide. DNA-based immunization is currently a promising approach that has been used to generate human vaccines for different age groups. In this study, novel HRSV DNA vaccine candidates were generated and preclinically tested in BALB/c mice. Three different versions of the codon-optimized HRSV fusion (F) gene were individually cloned into the pPOE vector. The new recombinant vectors either express full-length (pPOE-F), secretory (pPOE-TF), or M282-90 linked (pPOE-FM2) forms of the F protein. Distinctive expression of the F protein was identified in HEp-2 cells transfected with the different recombinant vectors using ELISA and immunofluorescence. Mice immunization verified the potential for recombinant vectors to elicit significant levels of neutralizing antibodies and CD8+ T-cell lymphocytes. pPOE-TF showed higher levels of gene expression in cell culture and better induction of the humoral and cellular immune responses. Following virus challenge, mice that had been immunized with the recombinant vectors were able to control virus replication and displayed lower inflammation compared with mice immunized with empty pPOE vector or formalin-inactivated HRSV vaccine. Moreover, pulmonary cytokine profiles of mice immunized with the 3 recombinant vectors were similar to those of the mock infected group. In conclusion, recombinant pPOE vectors are promising HRSV vaccine candidates in terms of their safety, immunogenicity and protective efficiency. These data encourage further evaluation in phase I clinical trials.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos BALB C , Potexvirus , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/isolamento & purificação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/isolamento & purificação , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
16.
Viral Immunol ; 29(1): 11-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26679242

RESUMO

Human respiratory syncytial virus (HRSV) infections have worldwide records. The virus is responsible for bronchiolitis, pneumonia, and asthma in humans of different age groups. Premature infants, young children, and immunocompromised individuals are prone to severe HRSV infection that may lead to death. Based on worldwide estimations, millions of cases were reported in both developed and developing countries. In fact, HRSV symptoms develop mainly as a result of host immune response. Due to inability to establish long lasting adaptive immunity, HRSV infection is recurrent and hence impairs vaccine development. Once HRSV attached to the airway epithelia, interaction with the host innate immune components starts. HRSV interaction with pulmonary innate defenses is crucial in determining the disease outcome. Infection of alveolar epithelial cells triggers a cascade of events that lead to recruitment and activation of leukocyte populations. HRSV clearance is mediated by a number of innate leukocytes, including macrophages, natural killer cells, eosinophils, dendritic cells, and neutrophils. Regulation of these cells is mediated by cytokines, chemokines, and other immune mediators. Although the innate immune system helps to clear HRSV infection, it participates in disease progression such as bronchiolitis and asthma. Resolving the mechanisms by which HRSV induces pathogenesis, different possible interactions between the virus and immune components, and immune cells interplay are essential for developing new effective vaccines. Therefore, the current review focuses on how the pulmonary innate defenses mediate HRSV clearance and to what extent they participate in disease progression. In addition, immune responses associated with HRSV vaccines will be discussed.


Assuntos
Asma/imunologia , Bronquiolite/imunologia , Imunidade Inata/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Anticorpos Antivirais/imunologia , Asma/virologia , Bronquiolite/virologia , Criança , Citocinas/imunologia , Células Dendríticas/imunologia , Progressão da Doença , Eosinófilos/imunologia , Humanos , Lactente , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/imunologia
17.
J Med Virol ; 88(6): 1086-91, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26595650

RESUMO

Respiratory tract infections are a principal cause of illness and mortality in children worldwide and mostly caused by viruses. In this study, the epidemiology of 11 respiratory RNA viruses was investigated in a cohort of hospitalized children at a tertiary referral center in Riyadh from February 2008 to March 2009 using conventional and real-time monoplex RT-PCR assays. Among 174 nasopharyngeal aspirates, respiratory syncytial virus (RSV) was detected in 39 samples (22.41%), influenza A virus in 34 (19.54%), metapneumovirus (MPV) in 19 (10.92%), coronaviruses in 14 (8.05%), and parainfluenza viruses (PIVs) in 11 (6.32%). RSV, PIVs and coronaviruses were most prevalent in infants less than 6 months old, whereas MPV and influenza A virus were more prominent in children aged 7-24 and 25-60 months, respectively. The majority of the viruses were identified during winter with two peaks observed in March 2008 and January 2009. The presented data warrants further investigation to understand the epidemiology of respiratory viruses in Saudi Arabia on spatial and temporal basis.


Assuntos
Criança Hospitalizada , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Pré-Escolar , Coronavirus/genética , Coronavirus/isolamento & purificação , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Masculino , Metapneumovirus/genética , Metapneumovirus/isolamento & purificação , Nasofaringe/virologia , Vírus da Parainfluenza 1 Humana/genética , Vírus da Parainfluenza 1 Humana/isolamento & purificação , Vírus Sincicial Respiratório Humano/genética , Arábia Saudita/epidemiologia , Estações do Ano
18.
Virus Genes ; 48(2): 252-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24370974

RESUMO

The genetic variability and circulation pattern of human respiratory syncytial virus group B (HRSV-B) strains, identified in Riyadh during the winters of 2008 and 2009, were evaluated by partial sequencing of the attachment (G) protein gene. The second hypervariable region (HVR-2) of G gene was amplified by RT-PCR, sequenced and compared to representatives of different HRSV-B genotypes. Sequence and phylogenetic analysis revealed that all Saudi strains belonged to the genotype BA, which is characterized by 60-nucleotide duplication at HVR-2. Only strains of 2008 were clustered with subgroup BA-IV, while those isolated at 2009 were clustered among the most recent subgroups (particularly BA-X and CB-B). Amino acid sequence analysis demonstrated 18 amino acid substitutions in Saudi HRSV-B strains; among which five are specific for individual strains. Furthermore, two potential N-glycosylation sites at residues 230 and 296 were identified for all Saudi strains, and an additional site at amino acid 273 was found only in Riyadh 28/2008 strain. O-glycosylation was predicted in 42-43 sites, where the majority (no = 38) are highly conserved among Saudi strains. The average ratio between non-synonymous and synonymous mutations (ω) implied stabilizing selection pressure on G protein, with evidences of positive selection on certain Saudi strains. This report provides preliminary data on the circulation pattern and molecular characteristics of HRSV-B strains circulating in Saudi Arabia.


Assuntos
Filogenia , Vírus Sinciciais Respiratórios/isolamento & purificação , Genes Virais , Glicosilação , Humanos , Vírus Sinciciais Respiratórios/genética , Arábia Saudita
19.
Arch Virol ; 159(1): 73-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23884633

RESUMO

Human respiratory syncytial virus (HRSV) is a frequent cause of hospitalization and mortality in children worldwide. The molecular epidemiology and circulation pattern of HRSV in Saudi Arabia is mostly uncharted. In the current study, the genetic variability and phylogenetic relationships of HRSV type A strains circulating in Riyadh Province were explored. Nasopharyngeal aspirates were collected from hospitalized children with acute respiratory symptoms during the winter-spring seasons of 2007/08 and 2008/09. Among 175 samples analyzed, 39 (22.3 %) were positive for HRSV by one-step RT-PCR (59 % type A and 41 % type B). Propagation of positive samples in HEp-2 cells permitted the recovery of the first Saudi HRSV isolates. Genetic variability among Saudi HRSV-A strains was evaluated by sequence analysis of the complete attachment (G) protein gene. The nucleotide sequence was compared to representatives of the previously identified HRSV-A genotypes. Sequence and phylogenetic analysis showed that the strains examined in this study were very closely related at both the nucleotide and amino acid level, and all of them are clustered in the GA2 genotype (and mostly belonged to the NA-1 subtype). A total of 23 mutation sites, 14 of which resulted in an amino acid change, were recorded only in Saudi strains. This is the first report on genetic diversity of HRSV-A strains in Saudi Arabia. Further analysis of strains on a geographical and temporal basis is needed to fully understand HRSV-A circulation patterns in Saudi Arabia.


Assuntos
Variação Genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/isolamento & purificação , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação , Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Arábia Saudita/epidemiologia , Estações do Ano , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA